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Abstract: -- A novel approach of modeling a nonlinear, highly time 
varying load such as an Electric Arc Furnace (EAF) is presented in 
this paper. First and second order Markov-like models are 
formulated to compare their effectiveness in the evaluation of the 
stationary nature of the process and the possibility of predicting the 
state variable such as arc current at least one step in advance. It is 
seen that the statistical behavior of the EAF data is stationary with 
respect to time by comparing certain characteristics of the two data 
sets derived from the empirical frequency distributions. A second 
order Markov-like model is proved to be very effective in the 
prediction of EAF current to a good degree of accuracy. The 
predictor is the most probable value of the immediate future, given 
the present and the immediate past for each step of prediction. 
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1.  INTRODUCTION 
The Electric Arc Furnace (EAF) is very common in the steel 
manufacturing industry to melt scrap and pre-reduced metals. 
Since it is a large, highly unbalanced, nonlinear and time 
varying load, the influence of EAF on power quality is of 
great concern to power systems engineers. The fact that arc-
length is time variant and the movement of scrap is random, it 
makes the current waveform look erratic. Voltage fluctuation, 
which is usually associated with a voltage flicker, is caused 
by the EAF current. For these reasons, the arcing process is 
assumed to be statistical in nature [1]. As a consequence, the 
EAF load can not be adequately represented by a 
deterministic dynamic model. 
The EAF is such an electrically chaotic load in nature that 
accurate modeling of it is necessary to evaluate and mitigate 
its deleterious impact on a power system. In fact, a lot of 
work has been reported in this area. The approaches using 
related v-i characteristics, in which arc length, arc voltage 
and arc current are expressed by empirical formulas, were 
presented in [3,4]. The authors of ref. [5] proposed a flicker 
compensation technique using stochastic and sinusoidal time 
varying laws. The EAF current is also considered as a 
deterministic chaotic system by Tan et al. al [6]. Most of 
these models are in time domain while the authors of ref. [7] 
employed a frequency domain method to analyze the 
harmonic EAF current. Varadan et al. al [8] suggested that a 
single phase arc furnace model should be adequate to 
represent a three phase EAF circuit. 
An alternative and new approach proposed in this paper is to 
model the EAF system as a Markov-like sequence based on 
ref. [9,10]. It is shown that this approach makes it possible to 
simulate the EAF behavior accurately. Developments in 

statistics and applied probability suggest that a suitable 
Markov-like model may fit a wide range of discrete-valued 
time series very well, in particular for dynamic data 
[9,10,11,12]. Thus the observed and recorded waveforms of 
an EAF system and other phenomena can be seen as 
nonlinear, dynamic time series, which may behave 
chaotically. In the following sections, the procedures for 
developing a first order and second order Markov-like models 
from field data in time series format are described. 
Nomenclature is defined as well. Then, the two models are 
evaluated by comparing the simulation results with actual 
current data. The paper also discusses the effectiveness of the 
one-step-ahead prediction approach using the results derived 
from the second order Markov-like modeling. The quality of 
the prediction is tested by comparison with real data. Simple 
statistical analysis is also used for this purpose. 

2.  MODEL DEVELOPMENT 
The development of the proposed models is based on ideas 
from Markov’s theory [9,10,12,13,14]. The application of a 
first order Markov-like model is discussed at first in detail. 
Then these ideas are extended to a second order Markov-like 
model. The formulation of the model involves steps i) to viii) 
in the following in relation to Fig. 1, which represents a 
typical arc current waveform. 

Fig. 1  Illustration of states used in Markov-like model  
Step i)  The global minimum and maximum values of the 
variable (arc current or voltage, etc.) under study over the 
interval of observation are identified. 
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Step ii)  All the values of the data from the global minimum 
to maximum are divided into a finite number (say N) of 
intervals such as state 1, state 2, … state N. (see Fig. 1). 
Step iii)  Given the time series {Xj: j=1, 2,… M} with its state 
space S={1, 2, …. N}, define 
δkj = 1 if Xj ∈ state k 

δkj = 0 if Xj ∉ state k         (1) 
Then the frequency of visits to state k called Empirical 
Frequency Function (EFF) is 
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Also define the Empirical Cumulative Distribution Function 
(ECDF) 
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It equals proportion of visits to less than or equal to state k 
during the time period {1, 2, … M} 
Step iv)  The frequency of transition from state k to l in one 
step is 
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It is the ratio of the number of transitions from state k  to l to 
the number of visits to state k in the data. 
πkl is an estimate of one step transition probability 

}state|state{ 1 kXlXP ii ∈∈+  for the first order chain {X}. 
Note that for each state k, {πkl : l=1,2 ….N} estimates the 
transition probability distribution of the next state given that 
the current state is k. This will be useful in making the 
prediction of the future state given the present state. 
Step v)  The frequency of transitions from state h to k and 
then to l in one step is  
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and it is an estimate of one step transition probability 
}state,state|state{ 11 hXkXlXP iii ∈∈∈ −+  for the second 

order chain {Yi=(Xi,Xi+1)},  
Step vi)  If πkl ≈ πhkl for all h, then the chain is approximately 
a first order Markov chain. Otherwise, find the third order 
transition frequency πghkl  
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and check if πghkl ≈ πhkl  for all g. If so, it is approximately a 
second order Markov chain. 
Step vii)  The second order chain Y is Markov-like but with 
state space S×S, the Cartesian product of S with itself. This 
should make the estimate of conditional distribution of the 
future given the present sharper, thus reduce the level of 
uncertainty. If necessary one could go to a third or higher 
order Markov-like chain Z, where one records three or more 
consecutive X values instead of two consecutive values. 
Step viii)  In addition to the above Markov-like modeling, it 
is also useful to give simple statistical summaries of the data 
such as the mean, variance and the empirical distribution.  

The application of the above procedure to some EAF data is 
described below. 

3.  MARKOV-LIKE MODEL APPLICATIONS 
Actual EAF data are used to test the models that have just 
been introduced in section 2. This EAF is a 50 MVA three-
phase ac unit which is connected to a 34.5 kV bus behind a 
specially designed EAF transformer rated at 100 MVA. 
Twenty seconds of historical arc current and voltage data of 
phase A is utilized to build the model. A first order Markov-
like model is proposed first for description of the concept in 
section 3.2. Then the second order Markov-like model for 
accurate modeling and prediction is discussed in section 3.3. 

3.1 First Order Markov-like Model 
To illustrate, the arc current data are divided into two 
independent sets. One could compute the estimates of the 
transition probability matrix from every data set, then use 
these estimates to simulate and compare the simulation 
results and the original data with each other to validate the 
model. The results from the first order Markov-like model are 
shown in Figs. 2 to 3 and Table 1. The upper part of Fig. 2 is 
the plots of the Empirical Frequency Function (EFF) πk for 
the two actual data sets and their simulation results. Since the 
data are very close to each other, expanded look within a 
small interval (states 25 to 35) for these EFFs is shown in the 
lower part of Fig. 2. Fig. 3 shows the Empirical Cumulative 
Distribution Function (ECDF) Fk of the corresponding EFFs 
of Fig. 2. Again, to make the figure clearer, Fig. 3 also gives 
an expanded look for states 25 to 35 in the lower part. Table 1 
indicates the mean and variance indices of the original and 
simulated current data. 
It can be easily seen that the EFFs for the two actual data sets 
in Fig. 2 are very much alike, and the simulation results are 
almost the same as the original actual data so that in the 
figure they are overlapped. In fact, during the simulation, 
even when the initial condition is changed, the results did not 
have much variation. It can also be seen that, means are the 
same for the original and simulation data sets. Their variances 
are also very close to each other. One may deduce from the 
simulation results that the transition matrix is a natural 
parameter of this system. It appears as well that the statistical 
behaviors of the EAF current are stationary with respect to 
time from the similarities in characteristics for the two data 
sets. The statement can also be confirmed by observing the 
ECDFs of the two data sets along with their simulation results 
given in Fig. 3.  
The same procedure is carried out on the EAF voltage and the 
corresponding EFFs are shown in Fig. 4. An expanded view 
is shown for states 25 to 35 in the lower part of this figure, 
just as in the case of processing EAF current. Since the EFFs 
are closer to each other than those from the EAF current, the 
model seems even more accurate for EAF voltage. This is to 
be expected because the waveform of the EAF voltage is not 
so irregular as the EAF current. The statistical indices for the 
two data sets are almost the same, as it is shown in Table 2. 
Accordingly, specific attention is paid to the EAF current 
only in the subsequent sections. 
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3.2  Second Order Markov-like Model 
The short-term and long-term predictions of the variable 
based on the present and past data are of practical interest and 
value to power engineers. Using the first order Markov-like 
model, the empirical frequencies of the states help in 
predicting future averages. Also, the estimated transition 
probability matrix helps prediction of the immediate future 
value given the present value. Some parts of the result file 
consisting of transition matrix are shown in Table 3. Since 
the matrix is sparse, only nonzero elements are recorded in a 
format of {πkl : its value}. For instance, the first line of data 
indicates that if the current state is 1, it has a high probability 
(π11=0.9000) to stay in this state in the next step. This 
transition matrix is good for a long-term prediction from the 
earlier analysis, i.e., the simulation results fit with the original 
data. However, it is found to be not good enough for short-
term prediction. For example, in state 41, it has positive 
probability to enter each of the states 39, 40, 41, 42 and 43. 
While all of the probabilities are below 0.40, as can be seen 
from Table 3, one can not predict the next value with 
accuracy and confidence. The problem of finding a better 
model for an accurate prediction is now addressed. 
 

Fig. 2  EFFs for actual arc current from a first order
Markov-like model  N=90  

3.2.1  Concept 
For short-term prediction, the transition probability estimates 
are not sharp (i.e., not very close to 1 or 0) in the first order 

Markov-like model. This leads one to consider a second order 
Markov-like model, where a vector Yi=(Xi-1,,Xi) is recorded 
for each time point. The first order Markov-like model, as it 
is shown in the upper part of Fig. 5, does not distinguish 
between increasing and decreasing trend. On the other hand, 
a second order Markov-like model does distinguish between 
increasing and decreasing trend, as shown in the lower part of 
Fig. 5. Also, most of the transition probabilities are close to 1 
or 0, as shown in Table 4. This property makes it effective in 
short-term prediction, i.e., given current state value Yi in Y 
chain, the value of Yi+1 can be estimated with higher 
accuracy.  
 

 
Fig. 3  ECDFs for actual arc current from a first order 

Markov-like model  N=90 
 

Table 1  Statistical indices of the states for original current 
data and simulation results 

 
 

The transition matrix for the second chain {Yi} is similar to 
that of first order Markov-like model, the dimension is double 
powered. That is to say, if the state number is set to be 50, for 
a first order Markov-like model the transition matrix is of the 
dimension (50×50), while for a corresponding second order 
Markov-like model, it is of the dimension 
(50×50)×(50×50)=(2,500×2,500). In Table 4, part of the 
matrix is also listed in the format of {πhkl : its value}, while 



CARIBBEAN COLLOQUIUM ON POWER QUALITY (CCPQ), JUNE 2003 
 

 4

the chain is defined as Yi=(Xi-1,,Xi). The results are very 
satisfactory. Most of transition probabilities are larger than 
0.9 or less than 0.1. In many states the probabilities are 1 or 
0. Therefore one can predict the value of the arc current at the 
next step with a high level of confidence. For instance, when 
the present state is (1,2), one can estimate with reasonable 
certainty that it will enter state (2,2) according to the 
transition matrix (vide Table 4). As mentioned earlier, the 
fact that the estimates of the second order one-step transition 
probabilities are sharper than those of the first order one-step 
transition probabilities suggests that the underlying time 
series is not a first order Markov chain. Nevertheless, this 
methodology provides accurate prediction of a seemingly 
chaotic time series. 
 

 
Fig. 4  EFFs for actual arc voltage from a first order  

Markov-like model  N=90 
 

Table 2  Statistical indices of the states for original  
voltage data and simulation results 

 

3.2.2  EFF Figures from Data and Simulation  
Only the EAF current is processed using a second Markov-
like model since it changes more abruptly. The results are 
shown in Fig. 6. It should be stressed that while the number 
of the state N is 50 in this case, in a second order Markov-like 

model, the states have been arranged as the sequence of (1,1), 
(1,2), … (1,50), (2,1), (2,2),… (50,50). But for convenience, 
the states in the x-axis are lined up into one dimension from 1 
to (50*50)=2500. The data are still divided into two parts in 
this approach. In Fig. 6, EFFs are plotted for the two actual 
data sets together with their simulation results derived from a 
second order Markov-like model processing using transition 
matrix. In addition, an expanded look for states 500 to 600 is 
provided in the lower part of Fig. 6. 
 

Table 3  Some elements of transition matrix for a  
first order Markov-like model 

 
 
 

Illustration of state in a first order Markov model

 Illustration of states in a second order Markov model

 State kXi-1
Xj

Xj-1

i-1 i i+1 j-1 j j+1

Time/ms

Arc Current

 State kXi-1
Xj

Xj-1

i-1 i i+1 j-1 j j+1

Time/ms

Arc Current
 State h

Xi

Xi

 
Fig. 5  Comparison of states in first and second  

order Markov-like model 
 

Table 4  Some elements of transition matrix for a  
second order Markov-like model 

 
 

It may be observed that the EFFs from the two actual data 
sets and simulation results are really similar. This suggests 
that EFFs and ECDFs from the actual data show the statistical 
characteristics when the sample data are large enough. It may 
not be the case if a small sample of data is selected. Statistical 
indices such as mean and variance are also included in Table 
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5. Their similarities in values also show that this model is 
effective. 

 
Fig. 6  EFFs for actual arc current from a second order  

Markov-like model  N=50 
 

Table 5  Statistical indices of the states for original  
current data and simulation results 

 
 

Based on these results, it is suggested that the transition 
matrix is a key parameter of the model for the following 
reasons: 
1) The transition matrix reflects the dynamic characteristics 
of the system, and it is flexible for prediction. 
2) The precision of prediction is high in this model, as it 
shall be demonstrated in the next section. 

4. ONE-STEP-AHEAD PREDICTION 
Ten seconds of additional actual data are selected for 
comparison with the results from one-step-ahead prediction 
by the second order Markov-like model. When predicting, 
given the state of Yi=(Xi-1,,Xi), one can search from the 
transition matrix and identify the state with  maximum 
conditional probability in the next step. Then the time domain 
value corresponding to that state is recorded as the estimate 

1
ˆ
+iX . The results can be achieved by following the same 

procedures for ten seconds. Fig. 7 gives 200 points of 
predicted data along with the actual testing data. It shows that 
the difference between the actual and predicted data at every 
time step is very small. A second order Markov-like model is 
applied in the same way to the predicted data as to the actual 
data. The EFFs from the result are shown in Fig. 8. These are 
close to those in Fig. 6. It is also the case in Table 6, where 
for predicted data the statistical indices of mean and variance 
are compared with those derived from the actual data. This 
suggests that the model is very effective for short and long 
term predictions. 

 
 

Fig. 7  Waveforms for a part of the predicted and  
related actual arc current 

5.  CONCLUSIONS 
Based on the Markov-like Modeling of the EAF 
current/voltage data as detailed in sections 3 and 4, one is 
able to draw the following conclusions.  
i)  From a deterministic point of view, the EAF time series 
{Xi: i=1, 2, … M} look quite chaotic and nonlinear. However, 
from the Markov-like modeling point of view, there is a 
remarkable regularity. 
ii) The Empirical Frequency Function, Empirical Transition 
Frequencies and other time averages exhibit consistency over 
time. Thus observing the first part of the data set it is possible 
to make prediction about various time averages for the 
following data sets. For a long-term time average prediction 
of this kind, the first order Markov-like model for {X} is 
quite adequate. 
iii) In short-term prediction, the second order Markov-like 
chain Y is better. It is found that the calculated probabilities 
based on Y are sharp, i.e., very close to 1 or 0. Hence it is 
better for accurate prediction than the first order ones. This 
suggests that the first order time series {X} is not Markovian 
and yet the methodology provides a relatively accurate 
prediction scheme. Thus the procedure is statistically robust. 
In some cases, it maybe necessary to use a third or higher 
order Markov-like model, but at the expense of increased 
computation. 
iv) In all, it appears that the Markov-like modeling is a very 
effective alternative to analyze the dynamics of an EAF 
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system and other kinds of discrete-valued time series with 
similar behaviors. 
 

 
Fig. 8  EFFs for the predicted current from a second  

order Markov-like model  N=50 
 

Table 6  Statistical indices of the states for actual  
and predicted data 
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