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Defining Reactive Power in Circuit Transients via
Local Orthonormal Representations

H. Lev-Ari A.M. Stanković

Abstract— The paper introduces the notion of reactive
power during circuit transients. The definition we propose
is based on the concept of local Hilbert space. It reduces to
well known quantities in steady state, and it is applicable to
systems with arbitrary number of phases. We present the
concept in terms of two local representations, namely Short-
Time Fourier Coefficients and Haar Wavelets. We illustrate
this “dynamic” reactive power on a simple example of a lin-
ear RL circuit for which closed-form expressions can be de-
rived.

I. INTRODUCTION

In many energy processing applications there has been
recently an increased interest in concepts of reactive (inac-
tive) power in cases of multiple driving frequencies and in
transients. In large part this is in response to the emergence
of new classes of loads that are interfaced with utility sys-
tems through power electronic converters. In particular,
literature on electric drives and power electronic convert-
ers focuses on the so called instantaneous reactive power
[1] which is obtained via an instantaneous projection of the
current onto the voltage. This quantity is identically zero
in single phase systems, and turns out to be related the part
of reactive power that can be compensated without energy
storage [2]. Another recent suggestion from the literature
is to use the “ac part” of the instantaneous power [3]. This
signal is not very indicative of loads commonly perceived
as reactive, as it is nonzero in steady state even for a linear
resistor.

In this paper we follow the path outlined in [2] and [4]
to define reactive power in transients. The definitions we
propose are applicable to an arbitrary number of phases.
We illustrate our development on a single phase system
because it suffices to demonstrate salient features of the
problem, while the necessary notation remains simple. It
will turn out that the concept of a local Hilbert space is
instrumental for our development, as we explain shortly.
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II. T IME-VARIANT REAL AND REACTIVE POWER

Consider an�-phase system, i.e., a system with� � �
conductors (“wires”) in which first� are referenced either
to a common ground, or the�� � ��-st (“neutral”) conduc-
tor. Then we can define the�-dimensional voltage� ���
and current vectors	 ���, where all currents have reference
directions “toward” the load. The instantaneous power de-

livered to the load is defined as
 ��� ��
� 	 ���� � ���. We de-
fine the time-variant real (active) power as a “short-term”
DC component (local in time) of the product
 ���, namely

�� ��� ��
� �� � �
��� 	 ���� � ����� (1)

Note that this quantity need not be positivefor every
�
, but

its long term average is positive for passive loads. This re-
sult motivates us to introduce a time-variant Hilbert space
framework for real-valued polyphase signals with the finite
local power, viz.

�� � �
��� �� ��� �� �� � � � for all

�
For a fixed “

�
” our space consists of finite signal segments,

and we define the (time-variant) inner product as

�� � �  !! ��� ��
� �� � �
���  ����� ����� (2)

With this definition,
�� ��� � �� � � 	 !! ���.

Similarly, the time-variant rms voltage and current are

�� ���� ��
� " �� � � � !! ��� �
�	 ���� ��
� " �� 	 � 	 !! ���

Because of the Cauchy-Schwarz inequality we have� �� ��� # �� �� ��� �	 �� ���, which suggests the definition of
time-varying reactive power

$ ��� ��
� % �� �� ��� & �	 �� ��� ' � �� ��� (3)

and the time-varying power factor

()* + ��� ��
� �� ���
�� ���� & �	 ���� (4)
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III. T IME-VARIANT FOURIER SERIES

Our time-variant Fourier series representation is based
on the so-called Short-Time Fourier Transform (STFT).
This means we associate a Fourier series representation
with the finite signal segment�� ��� � � ' � � � # ��

(5)

where we consider “
�
” as a parameter, viz.

� ��� � ������
�� ����	 �
 � � � ' � � � # �

(6a)

and �� ��� � �� � �
��� � �����	 �
 ��� (6b)

where
�

is the duration of a cycle (or the period in a
steady state). We are interested in energy processing sys-
tems where this quantity is typically fixed in advance to�
/
� (or

�
/��). The harmonic coefficient

�� ��� is a function
of the parameter

�
except when� �&� is a periodic signal

with period
�

: in this case
�� ��� is independent of

�
, and

coincides with the standard Fourier coefficient.

The Parseval identity for the Fourier series (6a) can be
written in the form

�� � �  !! ��� � � � �� ����� ��� (7)

where we used our definition (2), and where the super-
script � denotes complex conjugate (Hermitian) trans-
pose. This means that the space of polyphase signals� �&�
on �� ' � � �� and the space of their Fourier coefficients�� � ���� are isometric , and can be used interchangeably.
We shall carry our subsequent discussion mostly in terms
of Fourier coefficients. Notice that since� �&� is real val-
ued, its Fourier coefficients must be conjugate-symmetric,
i.e.,

� �� ��� � � �� ���.
IV. GENERALIZED ORTHONORMAL SERIES

Instead of the Fourier series (6a) we can use some other
orthonormal basis of the Hilbert space of square integrable
waveforms on�� � � �, such as the Haar basis [5]. This
means that (6a) is replaced by

� ��� � �� �� ���+� �� ' �� � � ' � � � # �
(8a)

and

�� ��� � �� � �
��� � ���+�� �� ' ���� (8b)

where we assume that for all� � �
�� � �� +� �� �+�� �� ��� � �� �� (8c)

We call �� ��� the time-variant Haar coefficients of� ���.
In particular, our Fourier series representation (6a)-(6b) is
obtained by setting

+� ��� � ��	 �
 � and
�� ��� � �� �����	 �
 � (9)

Because of orthonormality of
�+� �&��, the Parseval iden-

tity (7) still holds, but with the Fourier coefficients re-
placed by Haar coefficients.

The inner product expression (8b) can be rewritten, via
a change of the integration variable, as

�� ��� � �� � �� � �� ' � �+�� �� ��� (10)

which identifies �� ��� as the output of a linear time-
invariant filter with impulse response�� �� � � �

/� +�� �� �.
Typically the basis functions

�+� �&�� are chosen to decom-
pose the frequency content of the signal� ��� into (par-
tially overlapping) frequency bands. For instance, in the
Fourier series case (9)�� ��� is centered at the frequency� , which motivates the definition of a baseband equiva-
lent

�� ��� � �� �����	 �
 �, leading to our definitions (6a)-
(6b).

In the case of Haar representation the orthonormal fam-
ily is doubly indexed, namely!+� �� �� � � " # � � � � � # � # "��# ' �$, where

+� �� �� � � %"��#& �"��# �� ' � � (11a)

and & �� � �
'()(*

� � � � � #�
'� #� � � � ��

elsewhere
(11b)

In addition, the orthonormal basis includes the “DC func-
tion” +� �� �� � � + �� � � � � �� � elsewhere (11c)

and the “first Haar harmonic”

+ # �� �� � � & � �� �
Notice that for� , " and for all

� # � # "��# ' �,
the time-variant Haar coefficient�� �� ��� is a time-delayed
version of�� �� ���, viz.,

�� �� ��� � �� �� �� ' � �"��# � (12)
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Fig. 1. Haar wavelets in frequency domain (for T=1/60 sec).

Thus, for each value of� we need to evaluate only�� �� ���,and we obtain all other�� �� ��� by applying an appropriate
delay. Each�� �� ��� represents a different frequency band
(see Fig.1).

V. EXAMPLE

Consider a single-phase RL circuit, driven by the voltage

� ��� � + � *��  � � , �� � � �
The resulting current	 ��� satisfies the differential equation
(for

� , �
) ���/�� � � 	 � � which admits the solution

	 ��� � 	�� ��� � 	�� ���
with the steady state and transient components of	 ���
given by

	�� ��� � �� *��  � ' 	 ()*  �
� � 	 �

	�� ��� � �	 �� � ' 	�� �� �� ��
 �
where� ��
� �/
 � 	 ��
� � /� . Since the steady-state compo-
nent 	�� ��� is periodic, it consists of a single Fourier har-
monic with a time-invariant amplitude and phase. As a
result, for

� , �
,

�� � �
��� 	�� �����	 �
 ��� �

'(()((*
��� �	 �� � � � ���� ��	 �� � � � '��

else

The transient component, on the other hand, contributes to
all harmonics, viz.,

�� � �
��� 	�� �����	 �
 ��� � 	�� �� � �
� ' ��� ��
 � ��	 �
 �� � � � 	

In summary, the time-variant Fourier coefficients of	 ���
are (for

� , �
)

�� ��� �
'(((()((((*

	�� �� � ��� �#
� ��
 � � � ��� ��� ��� �� �#�	 � �  �  !� ���� �	 �� � � �� ��� ��� � �#�	 � � � �� �# ��� � � '�
Notice that  �� ���  � is proportional to"�#��/$� % &#' # (, de-
caying with time and with increasing harmonic index. In
fact, if we choose� � � )�* � � � �+� � , � -�� . ,
then the only significant harmonics are the zero-th and the
first one.

Since the “DC basis function” in the Haar basis is+� �� �� � � � for
� � � � �, the corresponding coefficient

is the same as in the Fourier basis, viz.,/ � �� ��� 0 �� ��� � 	�� �� � �
� ' ��� ��
 �
For the remaining Haar coefficients we have

/ � �� ��� � ' ����
/1� ' ����
� ' � �� ��� � �2 � �� � 	 � �3� ' ()* "2"� 4 5()* "2"� �()*  � � 	 *��  ��

� *�� "2"� �*��  � ' 	 ()*  ��6
In addition (recall (12)), for� , ", / � �� ��� � / � �� �� '� ����7 � for

� # � # "��# ' �. In particular, the first Haar
harmonic is/ # �� ��� � ' 89�: ��; �� ���' "�2 � �� � 	 � � �()*  �� 	 *��  ��
Notice that for� , � the Haar coefficients

/ � �� ��� consist
of both a transient component and a steady state compo-
nent. This is so because the linear filter used to extract the
Haar coefficient

/ � �� ��� from the current	 ��� has a nonzero
gain at the first harmonic frequency for all � , � (see
Fig.1). As a result, the steady state component	�� ���
“leaks through” this filter, making a contribution to

/ � �� ���
for all � , �. The magnitude of the steady state compo-
nent of

/ � �� ��� is proportional to�� ' ()* �<�� �, which de-
cays exponentially with�, namely,�'()* �<�� = "2 � &"��� .
The magnitude of the transient component of

/ � �� ��� is

proportional to��
 � ����
/1� ' ��� , and it also decays with� as"��� .

Nevertheless, the “first Haar harmonic” coefficient/ # �� ��� is quite similar to its Fourier counterpart. Since
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Fig. 2. Current� ��� during the transient./ # �� ��� is a passband signal, it should be compared with

"� !�# ����	 
 � $ � �� � 	 � �� ���
� �� �� � 	 � � �*��  � ' 	 ()*  ��

which differs from
/ # �� ��� only in terms of amplitude and

phase.

In summary, Fourier coefficients provide better fre-
quency localization, at least in steady state, while Haar
coefficients provide better time localization, due to the re-
duced length of the interval used to evaluate them: the
Haar coefficient

/ � �� ��� is evaluated from	 ��� values in�� ' �� � �� ����7 � � ' � ����7 �. Since our example involves
a smooth gradual transition to steady state, the use of
Fourier coefficients appears to be more appropriate.

VI. T IME-VARIANT POWERS IN THEEXAMPLE

We first display the overall current transient (Fig. 2),
where we delineate the first period

�
with a dashed ver-

tical line. Since	 ��� is undefined for
� � �

, the Fourier
coefficients

�� ��� can not be determined for
� � �

. If we
choose to define	 ��� � �

for
� � �

, then
�� ��� exhibit an

“initialization artifact” for
� � �� � � �, as is evident from

Fig. 3 where we show the time variation of the fundamen-
tal harmonic coefficient of the current

�# ���.
The various power components can now be determined

from their definitions (1),(3). Thus, using (7),

�� ��� � �� � � 	 !! ��� � ������
� �� ����� ���

but since in this example�� ��� � �
, except for �  � �,
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Fig. 3. Magnitude of fundamental harmonic coefficient�	 ���
during the transient.

and�# ��� � 
 /1� ��
� �#, we get (for
� , �

)�� ��� � � #� �# ��� � � �# �# ��� � "� ��#� �# ����
� � �"� �� � 	 � � � � �� ��� 	 ()*  � � *��  �

� � 	 �
Of course, as

� � � , the transient component of the cur-
rent decays and


����� �� ��� � � �"� �� � 	 � �
Next, �� �� ��� � 
 #/1 0 "  � #  � , and$� ��� � "  �#  � �	 �� ��� ' �"� ��#� �# ������� "  �#  � !�	 �� ��� ' "  �# ���  � $

� �"� �� #� �# ������
so that

$� ��� consists of two components:
� �"� ��#� �# ������ , which is a simple-minded extension
from the single phase, single harmonic steady-state expres-
sion "� �� #� �# �� "  � #  � !�	 �� ��� ' "  �# ���  � $, which is contributed by
the remaining harmonics of the current.

Using the closed form expression for�	 �� ��� from [6],
viz.,

�	 �� ��� � � �� ��� 52	 ()8: 2	 ' "� � 	 � 6 � "  �# ���  �
we obtain

$� ��� � 5	�� � � �� ��� 	 * ��  � ' ()*  �
� � 	 � 6 �

� � �" � �� ��� 52	 ()8: 2	 ' "� � 	 � 6
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As
� � � ,

�� ��� � �
, and


�� ��� $ ��� � 	��
, which

is the standard steady-state result for this case.

In Fig. 4 we show
�� ��� and

$ ��� for our example (with� � � )�* � � � �+� � , � -�� .). As explained earlier,
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Fig. 4. Transient waveforms of real and reactive power.

our waveforms exhibit a large “initialization artifact” dur-
ing the first period of the supply waveform (approximately�-+ �), which is caused by considering all waveforms to
be zero before

� � �
(recall that our closed form expres-

sions hold for
� , � � �

/
�).
VII. D YNAMICS OF LOCAL COEFFICIENTS

The interpretation (10) of�� ��� as the output of a lin-
ear time-invariant filter makes it possible to translate state-
space representations of signals into equivalent represen-
tations of their expansion coefficients. Thus, if

�� ��� � �� ��� � � � ���
then, from (8b)

��� ��� � ��� ��� � � �� ��� (13)

where �� ��� are the expansion coefficients of the input
� ���. It is important to notice that (13) holds for any or-
thonormal representation. In fact, it is a direct outcome of
(10), and does not rely on any specific properties of the
waveform+� �&�. For example, in the case of Fourier series
coefficients (6b), the corresponding equation is of the form

��� ��� � �� ' � � � ��� ��� � � �� ��� (14)

where
�

is the appropriate identity matrix.

When �� ��� are known, then�� ��� can be propagated
via (13).This requires, of course, to select the initial value

�� �� � for each expansion coefficient�� ���. If our choice,
say ��� �� �, differs from the true initial value, then the re-
constructed��� ��� will differ from the true one. We have
shown [7] that using a Kalman filter to estimate��� ��� re-
sults in an optimal reconstruction in the sense of minimiz-
ing the error � �� � � ��� ' �� ��� ��� ��
for all

�
, where

�� ��� � �� ��� ���+� �� ' ��
is the estimated signal, obtained by using (8a) with the es-
timated coefficients��� ���.

We have also shown that the state space model consist-
ing of (13) together with (8a) is not observable if the only
measurement used at time

�
is � ��� itself [7]. For the same

reason,�� �� � can not be recovered from knowledge of� �� � alone. Instead, our Kalman filter uses at every time
instant

�
measurements collected at several instants, i.e.,� ��� � � �� ' �# � � � �� ' �� � � ) ) ) � � �� ' �� � which makes the

state space model observable and leads to high quality es-
timates of�� ���.

VIII. C ONCLUSIONS

In this paper we proposed a notion of reactive power
during transient operation. The definition utilizes the no-
tion of a local Hilbert space and is fully compatible with
standard notions in steady state. We presented all concepts
in terms of generalized orthonormal coordinates, and ex-
plored Fourier and Haar bases in detail. While our illustra-
tive example is quite simple, it also suggests the possibility
of on-line control that would aim to compensate reactive
power during transients.
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