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Abstract-- This paper describes the gained experience on the 

development and application of techniques for harmonic analysis 
of nonlinear power systems. These methodologies have been 
developed in the time, frequency and hybrid time and frequency 
domain frames of reference. Their application to the 
computation of the periodic steady state solution of different test 
systems is detailed, indicating their advantages and limitations in 
terms of efficiency, computer requirements and accuracy. 
 

Index Terms—Analysis, hybrid, nonlinear, time-varying, 
hybrid, periodic steady state. 

I.  INTRODUCTION 
MPORTANT practical experience gathered on diverse 
aspects of the harmonic distortion, such as its causes, 
standards, mitigation, as well as its effect on the quality of 

power in power systems has been compiled and made 
available in the open literature [1-2]. 
 Harmonic detection and harmonic prediction are currently 
the two main fields of the digital harmonic analysis, which  
allow an  evaluation  and  diagnostics  of  the quality of 
power. The first determines and processes in real time the 
information of the monitored harmonic content in the 
network, whereas the later predicts the harmonic distortion by 
means of analyitical models implemented for digital 
simulation. To this category belong the techniques described 
in this contribution.  

In general, harmonic simulation techniques can be 
identified as frequency domain, time domain and hybrid time 
and frequency domain methods. In the sections to follow a 
description is given on the conceptual and analytical details on 
which rely the techniques previously mentioned. 

II.  METHODS AND ALGORITHMS  
Frequency Domain. Essentially,available techniques in the 

frequency domain are broadly  divided in current source 
method, iterative harmonic analysis and harmonic power flow 
methods. 
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A.  Current Source Method 
The frequency response of the power network, as seen by a 

particular bus, is obtained injecting a one per unit current or 
voltage at the bus of interest with discrete frequency steps for 
the particular range of frequencies. The process is based on 
the solution of the network equation, 
 

IVY =][                     (1) 
where [Y] is the network admittance matrix, V is the nodal 
vector to be solved and I is the known vector of current 
injection, with only one nonzero entry. 

The simplest current source method uses the 
sequence components frame of reference to obtain the 
propagation of characteristic harmonic currents by injecting 
ideal current sources into the power network [3]. In a later 
contribution, the solution of a power system is obtained 
directly in the phase frame of reference for three phase 
systems [4]. Both approaches are based on solving the entire 
network for each harmonic of interest, assuming harmonically 
decoupled circuits. 

 

B. Iterative Harmonic Analysis (IHA)  
The IHA is based on sequential substitutions of the Gauss-

type. The harmonic producing device is modeled as a supply 
voltage-dependent current source, represented by a fixed 
harmonic current source at each iteration. The harmonic 
currents are obtained by first solving the problem using an 
estimated supply voltage. The harmonic currents are then used 
to obtain the harmonic voltages. These harmonic voltages in 
turn allow the computation of more accurate harmonic 
currents. The solution process stops once the changes in 
harmonic currents are sufficiently small [5-9]. One of the 
main advantages of the IHA method is that the power network 
components can be modelled in a closed form, with time 
domain simulation or any other forms. Distorted and non-
distorted conditions can be handled with this method.  
 However, the narrow strability margin  and slow 
convergence characteristic of the IHA has limited its 
application to the solution of practical problems in power 
systems. Numerical dominance of the leading diagonal of the 
matrix of system parameters is required to ensure 
convergence. This is not, however, a condition satisfied by 
weak  or poorly damped systems or near sharply tuned 
resonant frequencies [5-6]. A method for improving the 
convergence characteristics of the IHA has been proposed [7]. 
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C. Harmonic Power Flow Method (HPF)  
The HPF method takes into account the voltage-dependent 

nature of power components. In general, the voltage and 
current harmonic equations are solved simultaneously using 
Newton-type algorithms [9-12]. 
 The harmonics produced by nonlinear and time-varying 
components are cross-coupled. This phenomenon has has been 
already represented in detailed models of the synchronous 
machine [13-15], the power transformer [16], arc furnaces 
[17], TCRs [18] and the converter [19].  
In [12] a harmonic domain solution process for the entire 
network is used  where nodes, phases, harmonics and 
harmoni-coupling are explicitly represented. The solution is 
based on a linearization process around a particular operation 
point of nonlinear and time-varying components. Thus, a 
linear relationship between harmonic voltages and currents is 
possible; this is a valid condition only in a close neighborhood 
of the operation point. As a result of the linearization process, 
a Norton harmonic equivalent is obtained where the phase 
unbalance and harmonic cross-coupling effects are explicitly 
represented. The computation of the equivalent may not be 
easy and for obtaining accurate results it should be iteratively 
updated. The computational effort increases in direct 
proportion to the size of the analyzed system and to the 
number of harmonics explicitly represented. The unified 
iterative solution for the system has the form, 
 

VYI J ∆=∆ ][                   (2) 
 
where I∆  is the vector of incremental currents having the 
contribution of nonlinear components, V∆ is the vector of 
incremental voltajes and ][ JY  is the admittance matrix of 
linear and nonlinear components. The later components are 
represented for each case by the computated Norton harmonic 
equivalent. This is a numerically robust methodology having, 
in addition, good convergence characteristics [12]. 
 In a more recent contribution [20] a Newton-Raphson 
method is proposed based on the instantaneous power balance 
formulation for the representation of linear and non-linear 
loads.  
 

D. Time Domain  
In principle, the periodic behaviour of an electric network 

can be obtained directly in the time domain by integration of 
the differential equations describing the dynamics of the 
system, once the transient response has died-out and the 
periodic steady state obtained [21]. This Brute Force 
procedure [22] may require of the integration over 
considerable periods of time until the transient decreases to 
negligible proportions. It has been suggested only for the 
cases where the periodic steady state can be obtained rapidly 
in a few cycles [6]. This is usually the case of systems where 
ideal sources are assumed and are, in addition, sufficiently 
damped. In this formulation, the general description of 
nonlinear and time-varying elements is achieved in terms of 
the following differential equation, 
 

),( txfx =&                    (3) 
 
where x  is the state vector of m elements. 
 The inefficient solution of (3) based on a conventional  
numerical integration process such as the Runge-Kutta has 
limited its application to obtain the periodic steady state 
solution of electric systems with nonlinear and time-varying 
components, even though in the absence of numerical 
instability this process leads to the “exact” solution [22].  
 
Fast Convergence to the Limit Cycle (Steady State) 
 

A technique has been used to obtain the periodic steady 
state of the systems without the the computation of the 
complete transient [23]. This method is based on a solution 
process for the system based on Newton iterations. In a later 
contribution [24], techniques for the acceleration of the 
convergence of state variables to the Limit Cycle based on 
Newton methods in the time domain have been introduced 
with the purpose of removing the severe limitations and 
computational inefficience of conventional Brute Force 
methods to obtain the periodic solutions in power systems. 
 Fundamentally, to derive these Newton methods it is 
assumed that the periodic steady state solution )(tx of (3) is T-
periodic and can be represented as a Limit Cycle for kx in 
terms of other periodic element of x or in terms of an arbitrary 
T-periodic function, to form an orbit. Before reaching the 
Limit Cycle the cycles of the transient orbit are very close to 
it. Their position is apropiately described by their position in 
the Poincaré Plane [22]. A single cycle “maps”  its starting 
point ix to its final point 1+ix  and also maps, from a Base 
Cycle [24], a segment of perturbation ix∆ to 1+∆ ix . All the 
mappings close to the Limit Cycle are quasi-linear, so that a 
Newton method can be used to obtain the starting point ∞x of 
the Limit Cycle. 

It is posible to take advantage on the linearity taking place 
in the neighborhood of a Base Cycle if (2) is linearized around  
a solution )(tx from it to Tit + , yielding the variational 
problem, 

 
xtJx ∆=∆ )(&                  (4) 

 
where )(tJ is the T-periodic Jacobian matrix. 
 Note that (4) allows the application of Newton type 
algorithms to extrapolate the solution to the Limit Cycle, 
obtained as [24], 
 

)( 1 iii xxCxx −+= +∞               (5) 
where  

1)( −Φ−= IC                 (6) 
 In (5) ∞x , ix and 1+ix  are the vectors of state variables at 
the Limit Cycle, beginning and end of the Base Cycle 
respectively, and in (6) C, I and Φ  are the iteration, unit and 
identification matrices, respectively. 
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This technique has been successfully applied to the 
modeling in the time domain of components such as the 
synchronous machine [25], the power transformer [26], arc 
furnaces [27], TCRs [28], TSCs [29] and TCSCs [30]. 
  

E.  Hybrid Methods 
The fundamental advantages of the frequency and time 

domains are used in the hybrid methodology [24-25], where 
the power components are represented in their natural frames 
of reference, e.g., the linear in the frequency domain and the 
nonlinear and time-varying in the time domain. The Fig. 1 
illustrates the conceptual representation of the hybrid 
methodology. The voltages V at the load nodes where the 
nonlinear components are connected are iteratively obtained. 
Starting from estimated V values, the currents LI  for the 
linear part are computated for each harmonic h using the 
harmonic admittance matrix ][ kY , which includes non-linear 
load effects. For the nonlinear part, V is taken in the time 
domain as the periodic function )(tv to obtain )(ti , which is 
then transformed to NI in the frequency domain. In 
convergence NL III +=∆  tends to zero. The iterative 
solution for the entire system has the form, 
 

VYI k ∆=∆ ][                    (7) 
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Fig. 1 System seen from load nodes  

 
F. Parallel Processing.  
 
The methods and algorithms described in the previous 
sections are based on different frames of reference.; each of 
them having associated a particular computational efficiency. 
There is a common characteristic between these techniques: 
all of them are based on a conventional sequential computer 
solution. In recent contributions [31-33], parallel processing 
technology [34-35] has been applied to further enhance the 
efficiency of harmonic simulation techniques. The basic idea 
is to solve a large problem by splitting it-up into several small 
tasks, which are simultaneously solved to obtain a final 
overall solution of the original problem. Preliminary results on 
harmonic analysis indicate that the application of parallel 
processing considerably improves the efficiency reducing the 
computational effort required by conventional sequential 
solution techniques. 
 

III CASE STUDIES 
 
A. Application of the Harmonic Domain 

The Harmonic Domain is applied to the solution of the 
practical Jaguara-Taquaril transmission system [6], modified 
to incorporate a load to the end of the 398 km transmission 
line, as illustrated in Fig. 2(a). Detailed three-phase models in 
the Harmonic Domain of the synchronous generator, the 
power transformer and the transmission line  have been used. 
The details on the analytical formulation and test data are 
given in [15]. The generator model incorporates the stator-
rotor harmonic interaction and magnetic saturation effects 
[15]. The transformer model takes into account a multilimb (3 
o 5) magnetic core where the saturation phenomenon is 
represented [11]. Besides, the harmonic coupling and winding 
electrical connections effects are incorporated. The 
transmission line is represented with a frequency dependent 
model where long line effects are taken into account [36]. 
 The Fig. 2(b) illustrates the response obtained at node 4. 
The distorted voltage waveforms and their harmonic content 
shown in Fig. 2(c) describe the combined effects of the 
intrinsic system unbalance, saturation and harmonic 
interaction between stator-rotor in the generator, transformer 
saturation, magnetic core (3 limbs), electrical configuration 
(grounded star-delta), frequency-dependence and long line 
effects of the transmission line. 

1 2 3 4
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Fig. 2. (a) Test system 1; (b) Voltajes at node 4; (c) Voltaje 
harmonic content at node 4 
 
B. Application of Techniques for the Acceleration to the Limit 
Cycle.  

The Fig. 3 illustrates the case of a 3 node network with 
magnetizing branches and arc furnaces connected at nodes 2 
and 3 respectively, two shunt capacitors and three transmisión 
lines. The dynamic of the system is represented by eleven 
ordinary differential equations The source is assumed 
sinusoidal of 1.0 p.u. in amplitude. The Limit Cycle is located 
within a maximum error of ..10 10 up−  
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Fig. 3 Test system 2. 

 
The periodic steady state of the system is obtained in 79 

periods (cycles) of time (NFC) using the Brute Force method 
(BF) and in 56 using the Newton methods for the acceleration 
of the convergence to the Limit Cycle based on the Direct 
Approach (DA) and Numerical Differentiation (ND) 
procedures, respectively [24], see Table 1. The voltage 
through capacitor C1 and its harmonic content are illustrated 
by Figs. 4(a) and (b), respectively. A considerable harmonic 
distortion is observed in the capacitor voltage, see Fig. 4(a), 
mainly produced by the strong harmonic injection coming 
from the arc furnaces. For this particular case large amounts 
of higher harmonics are produced, as observed from Fig. 4(b) 
where the 15th harmonic is around 30% of the fundamental  

 
Table 1. Errors during convergence of DA y ND. 

NFC Brute Force DA Method ND Method 
8 2.0454e-002 2.0454e-002 2.0454e-002 

20 6.6126e-004 9.4284e-003 9.4284e-003 
32 2.7154e-005 4.2512e-005 4.2510e-005 
44 1.1015e-006 8.6676e-010 8.6957e-010 
56 4.4521e-008 8.4932e-015 1.1643e-014 
: :   

79 9.4800e-011   
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(b) 
Fig. 4. Voltage and harmonic content in capacitor C1.(a) 
Voltage 1Cv ; (b) Harmonic content. 
 
C.  Application of the Hybrid Methodology.  
The hybrid methodology has been successfully applied to 
obtain the periodic steady state solution of larger systems [24]. 
However, to date the analysis has been restricted to single 
phase systems, such as IEEE test systems of 14, 30, 57 and 
118 nodes [37]. In Table 2 are reproduced the results obtained 
and reported in [24] for the 118 node test system. Three nodes 
are indicated where nonlinear loads of the type of the 
magnetizing branch of a transformer are connected. The 
convergence was obtained in four iterations to meet a 
criterium for convergence of ..10 6 up−  
 

Table 2. Harmonic voltages, IEEE-118 test system. 
Harmonic Node 7 Node 107 Node 118 

1 0.98913 0.99158 0.95101 
3 2.637e-03 2.305e-03 1.786e-03 
5 3.294e-05 1.265e-04 6.060e-05 

 
D. Application of Parallel Processing 
The Table 3 gives the relative efficiency achieved with the 
solution obtained for test system 2 with the sequential and the 
parallel computation using PVM with the ND method. For this 
test case seven computers were used; one taking the role of 
the master processor (797 MHz) and six of the slave 
processors (794 MHz). All computers have installed the 
UNIX operative system. 
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The relative efficiency is computed as [38], 

P
relative T

TE 1=                 (7) 

where, 

1T   execution time with one processor 

PT   execution time with P processors 
Note from Table 3 that the use of a slave processor is 
equivalent to the sequential solution process. The relative 
efficiency increases with the number of slave processors used. 
For the analyzed case the use of four slave processors results 
on a relative efficiency improvement varying between 1.0 and 
1.7336 with respect to the sequential solution using 512 time 
steps per period, whereas for 4096 time steps per period this 
variation goes from 1.0 to 1.8520. 
 

Table 3 Sequential vs parallel solution comparison using 
PVM 

Time steps per period Number of 
Slave 

Processors 
512 1024 2048 4096 

1 1.0 1.0 1.0 1.0 
2 1.3911 1.4444 1.4583 1.4369 
3 1.6121 1.7096 1.7455 1.7250 
4 1.7336 1.8227 1.8596 1.8520 

 
Table 4 gives the relative efficiency achieved with the solution 
obtained with the sequential and parallel computation of the 
ND method using the multithreading platform. For this case a 
797 MHz computer with two processors was used. This 
computer has installed the UNIX operative system. It can be 
noticed that there is a significant increase on the relative 
efficiency with the use of two threads, e.g. from 1.0 to 1.4824 
with 512 time steps per period and from 1.0 to 1.5081 with 
4096 time steps per period. However, the efficiency remains 
nearly constant with additional threads. 

 
Table 4 Sequential vs parallel solution comparison using 

threads 
Time steps per period Number 

of 
threads 

512 1024 2048 4096 

1 1.0 1.0 1.0 1.0 
2 1.4444 1.4461 1.4449 1.4430 
3 1.4824 1.4878 1.4933 1.5005 
4 1.4824 1.4911 1.5000 1.5073 
M  M  M  M  M  

11 1.4824 1.4977 1.5033 1.5081 
 

III. CONCLUSIONS 
 

 A description has been given on the fundamentals of the 
techniques for the harmonic analysis in power systems, 
developed in the frames of reference of frequency, time and 
hybrid time-frequency domain, respectively. The details on 

their formulation, potential and iterative process has been 
given.  

In general Harmonic Power Flow methods are numerically 
robust and have good convergence properties. Howerver, their 
application to obtain the non-sinusoidal periodic solution of 
the power system may require the iterative process of a matrix 
equation problem of very  high dimensions.  

Conventional Brute Force methodologies in the time 
domain for the computation of the periodic steady state in the 
power system are in general an inefficient alternative which, 
in addition, may not be sufficiently reliable, in particular for 
the solution of poorly damped systems. The potential of the 
Newton techniques for the acceleration to the Limit Cycle has 
been illustrated. Their application yields efficient time domain 
periodic steady state solutions.  

The principles of  the hybrid methodology of solution have 
been given and its potential has been indicated for the solution 
of larger single phase systems.  It is an interesting alternative 
of solution in merit to its ability to represent the system 
components in their natural frame of reference, leading to 
efficient, robust periodic steady state time solutions for the 
complete network. To date it has been successfully applied to 
the solution of single phase systems, being in progress its 
application to the periodic steady state solution of practical 
three phase systems.  

 Preliminary results on the application of parallel 
processing in harmonic analysis indicate that this technology 
can substantially enhance the original computer efficiency of 
existing harmonic simulation techniques. This is a field in 
need of further investigation. 
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