An active filter is a device for reducing harmonic distortion by supplying harmonic components

Classification : Parallel, Series, Unified

- Hybrid filters : Active + Passive
- Applications
- Modelling guidelines
- Example

SHUNT	SERIES		
Operates as a current source	Operates as a voltage source		
Voltage-fed PWM inverter with current minor loop	Voltage-fed PWM inverter without current minor loop		
Inductive, current-source loads, harmonic current sources	Capacitive, voltage-source loads, harmonic voltage sources		
High load impedance	Low load impedance		
Excellent and independent of the source impedance for current-source loads, but depend on the source impedance when the load impedance is low	Excellent and independent of the source and the load impedances for voltage-source loads, but depend on the source impedance for current-source type loads		
Reactive power compensation	Voltage regulation		
Commercial stage	Laboratory stage		
	SHUNT Operates as a current source Voltage-fed PWM inverter with current minor loop Inductive, current-source loads, harmonic current sources High load impedance Excellent and independent of the source impedance for current-source loads, but depend on the source impedance when the load impedance is low		

Scheme of the test system

Detailed scheme of the power circuit

Control unit

PCC voltage and rectifier current

PCC voltage and source current

Rectifier and source currents

PCC voltage and rectifier current

PCC voltage and source current

Harmonic Distortion

CASE	Current	RMS (A)	H1 (A)	THD (%)	H5 (%)	H7 (%)	H11 (%)	H13 (%)
1	Load	45.26	43.80	26.00	23.99	8.599	3.802	3.001
	Source	52.43	52.41	2.739	0.427	0.961	0.306	0.270
2	Load	67.43	49.39	92.96	73.70	52.90	16.43	8.357
	Source	59.15	59.02	6.374	3.707	4.089	0.903	1.776
3	Load	66.70	49.19	91.57	72.78	52.18	15.42	7.786
	Source	58.72	58.13	14.10	9.324	9.944	0.968	1.185

Single-phase scheme

Voltage compensation
 Only magnitude
 Total compensation

$$U_{\text{comp}} = \sqrt{\left(U_{\text{p}} \cdot Cos \boldsymbol{q}_{\text{p}} - U_{\text{hdt}} \cdot Cos \boldsymbol{q}_{\text{hdt}}\right)^{2} + \left(U_{\text{p}} \cdot Sin \boldsymbol{q}_{\text{p}} - U_{\text{hdt}} \cdot Sin \boldsymbol{q}_{\text{hdt}}\right)^{2}}$$
$$= \sqrt{U_{\text{p}}^{2} + U_{\text{hdt}}^{2} - 2 \cdot U_{\text{p}} \cdot U_{\text{hdt}} \cdot Cos \boldsymbol{g}}; \qquad \boldsymbol{g} = \boldsymbol{q}_{\text{p}} - \boldsymbol{q}_{\text{hdt}}}$$

'ab' transformation

$$S_{ab} = S_{a} + j \cdot S_{b} = \sqrt{\frac{2}{3}} \cdot \left(S_{a} \cdot e^{j0} + S_{b} \cdot e^{j\frac{2\cdot p}{3}} + S_{c} \cdot e^{j\frac{4\cdot p}{3}} \right)$$

$$\begin{bmatrix} S_{a} \\ S_{b} \\ S_{0} \end{bmatrix} = \sqrt{\frac{2}{3}} \cdot \begin{bmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & \sqrt{3} & -\frac{\sqrt{3}}{2} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \cdot \begin{bmatrix} S_{a} \\ S_{b} \\ S_{c} \end{bmatrix}$$

$$\begin{bmatrix} S_{a} \\ S_{b} \\ S_{c} \end{bmatrix} = \sqrt{\frac{2}{3}} \cdot \begin{bmatrix} 1 & 0 & \frac{1}{\sqrt{2}} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} & \frac{1}{\sqrt{2}} \\ -\frac{1}{2} & -\frac{\sqrt{3}}{2} & \frac{1}{\sqrt{2}} \\ -\frac{1}{2} & -\frac{\sqrt{3}}{2} & \frac{1}{\sqrt{2}} \end{bmatrix} \cdot \begin{bmatrix} S_{a} \\ S_{b} \\ S_{0} \end{bmatrix}$$

'ab' transformation

$$v_{a}(t) = \mathbf{x} \cdot Cos(\mathbf{w}t + \mathbf{j}_{d}) + \mathbf{y} \cdot Cos(\mathbf{w}t + \mathbf{j}_{i})$$
$$v_{b}(t) = \mathbf{x} \cdot Cos(\mathbf{w}t + \mathbf{j}_{d} - \frac{2\mathbf{p}}{3}) + \mathbf{y} \cdot Cos(\mathbf{w}t + \mathbf{j}_{i} + \frac{2\mathbf{p}}{3})$$
$$v_{c}(t) = \mathbf{x} \cdot Cos(\mathbf{w}t + \mathbf{j}_{d} + \frac{2\mathbf{p}}{3}) + \mathbf{y} \cdot Cos(\mathbf{w}t + \mathbf{j}_{i} - \frac{2\mathbf{p}}{3})$$

$$\boldsymbol{a} = \sqrt{\frac{3}{2}} \cdot \left[\mathbf{x} \cdot Cos(\boldsymbol{w}t + \boldsymbol{j}_d) + \mathbf{y} \cdot Cos(\boldsymbol{w}t + \boldsymbol{j}_i) \right] = \boldsymbol{a}_+ + \boldsymbol{a}_-$$
$$\boldsymbol{b} = \sqrt{\frac{3}{2}} \cdot \left[\mathbf{x} \cdot Sen(\boldsymbol{w}t + \boldsymbol{j}_d) - \mathbf{y} \cdot Sen(\boldsymbol{w}t + \boldsymbol{j}_i) \right] = \boldsymbol{b}_+ + \boldsymbol{b}_-$$

Symmetrical component calculation

$$\mathbf{a}_{+} = \frac{1}{2} \cdot \left[\mathbf{a} - \mathbf{b}_{(-p/2)}\right]$$
$$\mathbf{b}_{+} = \frac{1}{2} \cdot \left[\mathbf{a}_{(-p/2)} + \mathbf{b}\right]$$
$$\mathbf{a}_{-} = \frac{1}{2} \cdot \left[\mathbf{a} + \mathbf{b}_{(-p/2)}\right]$$
$$\mathbf{b}_{-} = \frac{1}{2} \cdot \left[\mathbf{a}_{(-p/2)} - \mathbf{b}\right]$$

Dynamic Voltage Restorer Synchronous reference - 'dq' transformation

$$\begin{bmatrix} \mathbf{S}_d \\ \mathbf{S}_q \end{bmatrix} = \begin{bmatrix} Cos \mathbf{q} & Sen \mathbf{q} \\ -Sen \mathbf{q} & Cos \mathbf{q} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{S}_a \\ \mathbf{S}_b \end{bmatrix}$$

Calculation of the actual voltage compensation

$$V_{\text{comp}} = \frac{1}{LC \cdot s^2 + RC \cdot s + 1} \cdot V_{\text{conv}} - \frac{R + L \cdot s}{LC \cdot s^2 + RC \cdot s + 1} \cdot (n \cdot I_{\text{load}})$$

Control strategy

- Measure system voltages and currents
- Apply 'ab' transform to voltages and currents, and obtain symmetrical components
- Obtain 'dq' components
- Determine voltage compensation in 'dq' values for positive and negative sequences
- Deduce the values to be obtained at the converter terminals, taking into account the passive filter effect
- Obtain compensation voltages by applying antitransforms ('dq' → 'ab' → 'abc')
- Determine gate signals by means of a PWM control strategy

Test system

Test cases

- Same voltage dip at the three phases
- Voltage dip in two phases, voltage swell in the third phase, with phase angle jumps

Input voltages

Load voltages

Voltages injected by the DVR

Input voltages

Load voltages

Voltages injected by the DVR

Phase - 'a'

Phase - 'b'

Phase - 'c'

Stochastic Prediction of Voltage Dips

- The Monte Carlo method
- Diagram of the test system
- Assumptions
- Voltage dip calculations
 - voltage dip probability density
 - number of voltage dips
- Effect of protective devices

The Monte Carlo Method

- A widely used technique for analyzing multidimensional complex systems
- It can be used for solving both stochastic and deterministic problems
- This technique is based on a iterative procedure that is repeated using in every new step a set of values of the random variables involved in the process, being these values generated according to the probability density function associated to each variable.

Scheme of the Test System

HV equivalent : 110 kV, 1500 MVA, X/R = 10 Substation transformer : 110/25 kV, 10 MVA, 8%, Yd11 Distribution transformers: 25/0.4 kV, 1 MVA, 6%, Dy Lines : $Z_{1/2} = 0.61 + j0.39$, $Z_0 = 0.76 + j1.56$ Ω/km

Stochastic Prediction

- Voltage dips are generated only by faults
- Characteristics of the faults
 - Fault location : It is selected by generating a uniform random number
 - Fault resistance: normal distribution, average value =10 S, standard deviation =1 S
 - Duration of the fault: normal distribution, average value = 0.06s, standard deviation =0.01 s
 - Initial time of the fault: uniform distribution between 0.04 and 0.06 s
 - Probability of each type of fault: LG: 80%, 2LG: 17%, 3LG: 0%, LL: 2%, 3L: 1%
- The test system was simulated 5000 times
- Assuming 12 faults per 100 km and year, this equals the performance of the network during 366 years

Fault location probability density

Fault resistance probability density

Initial fault time probability density

Fault duration probability density

Fault type probability

Dip density function at Node 4 - phase 'a' - after 1000 runs

Dip density function at Node 4 - phase 'a' - after 5000 runs

Protective devices

Significant influence of protection devices Only reclosers have been simulated Very simple model based on a delay and a reclosing interval Only one reclosing operation Dip density function considering different reclosing intervals : 100 and 120 ms • Number of dips per year and phase, with and without reclosers

Protective devices

A (with Recloser) A (without Recloser) RMS Voltage (kV) Time (ms)

Voltage at a node located in the faulted feeder

Voltage at a node located in the unfaulted feeder

Dip density function at Node 4 - phase 'a' Reclosing interval : 100 ms

Number of dips per year at Node 4 - phase 'a' Without recloser

Number of dips per year at Node 4 - phase 'a' With recloser - Reclosing interval : 100 ms

Conclusions

- EMTP-like tools are sophisticated packages that are regularly updated and expanded
- They tools provide capabilities for obtaining transient and harmonic solutions, and representing nonlinear and frequency-dependent components
- They are very efficient to predict disturbance effects and to evaluate new mitigation techniques, but their capabilities are very limited to represent semiconductors
- There is a growing trend towards open systems, with the design of more efficient interfaces and the improvement of postprocessing capabilities